Multi-physics geophysical acquisition system for land, borehole & marine applications

K. Strack^{1,*}, S. Davydycheva¹, T. Hanstein¹, V. Korepanov², & M. Smirnov¹

¹KMS Technologies, Houston, Texas, USA ²LEMI LLC, Lviv, Ukraine

July 2016

© 2009 - 2016 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Multi-physics acquisition system Outline

Objective & history Architecture & hardware > Examples: - 11 channel MT - Monitoring - FSEM > Conclusion

© 2009 - 2016 KMS Technologies

3

Background >>> Architecture & HW >>> Examples >>> Conclusion History – the first seismic- EM system

- 26 years ago EAGE Copenhagen 1990
- Seismic architecture (SRATE)
- Only for time domain CSEM
- Multi-channel
 - Multi-components (E&H)
 - High dynamic range 27 bits
 - Limited by wired digital telemetry (1.5 km)
 - Limited by power (1 day)
 - Timing & GPS issues

Quantum leap in processing & data volume

Rüter, H., and Strack, K.-M., 1995, Method of processing transient electromagnetic measurements in geophysical analysis, **US patent 5,467,018.**

Background >>> Architecture & HW >>> Examples >>> Conclusion History – the first seismic- EM system

A New Multichannel

Transient Electromagnetic System

K.-M. Strack (1), W. Martin (2), H.Rüter (2), T. Speth (1)

University of Cologne
 Institut f. Geophysik u. Meteorologie
 Albertus Magnus Platz
 5000 Köln 41 – FRG

(2) DMT - IAGHerner Str. 454630 Bochum - FRG

26 years ago EAGE Copenhagen 1990

Rüter, H., and Strack, K.-M., 1995, Method of processing t electromagnetic measurements in geophysical analysis, **U** 5,467,018. Paper presented at 52nd EAEG Meeting and Technical Exhibition Kopenhagen, 1990

© 2009 - 2016 KMS Technologies

Background >>> Architecture & HW >>> Examples >>> Conclusion History versus NOW

- EM & microseismics in one unit
- State-of-the-art seismic architecture (node)
 - Wireless array
 - Large memory SD cards
- EM requirements
 - Broad band (DC-80 kHz, low noise, low drift)
 - Multi-components, multi-physics
 - Transition to digital sensors- partial
 - High dynamic range
 - 8 km long range wireless & WIFI (2 types)
 - Autonomous, can record for weeks
 - GPS timing & atomic crystal (marine option)
 - Lower cost

Processing is seismic software compatible

Background >>> Architecture & HW >>> Examples >>> Conclusion High value APPLICATIONS – LOW to HIGH

© 2009 - 2016 KMS Technologies

Background >>> Architecture & HW >>> Examples >>> Conclusion EM commercial status - 2016

➤ Land:

- Magnetotellurics is the 'workhorse'
- Land CSEM rarely used
- Industry: from few global → many local operators
- Seismic static correction market slowly emerging (for EM)
- Borehole: EM major contributor (hydrocarbon delineation, reserve estimates etc)
- Airborne: EM is major contributor (depth to 200-500 m)
- Marine: stable(??) market, 1 major operator

Background >>> Architecture & HW >>> Examples >>> Conclusion Land acquisition requirements

Background >>> Architecture & HW >>> Examples >>> Conclusion EM technical status

➤ Land:

- Hydrocarbon apps require conductor AND resistor sensitivities
- Smaller technical challenges: 3D, S/N etc
- \rightarrow integration requires unique TALENTS
- Borehole:
 - Induction logs (low resistivities) & Laterologs (higher resistivities)
 - Array tools extend range with large OVERLAP
 - 3D induction
 - Borehole mud gives some limitations (near surface in exploration)
 - Fully integrated into value solutions
- Airborne: mostly conductive targets; fully integrated
- Marine: in principle same as land but easier

Background >>> Architecture & HW >>> Examples >>> Conclusion **UNBIASED** resistivities with contrainted multi-physics

© 2009 - 2016 KMS Technologies

> 15 years of excellence in electromagnetic R&D

After Strack, 1992

Background >>> Architecture & HW >>> Examples >>> Conclusion Dense acquisition → better images

Background >>> Architecture & HW >>> Examples >>> Conclusion Architecture & hardware

Objective & history Architecture & hardware > Examples: - 11 channel MT - Monitoring - FSEM > Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion Architecture & hardware: original 2009 design

Background >>> Architecture & HW >>> Examples >>> Conclusion Architecture & hardware: original 2009 design

Background >>> Architecture & HW >>> Examples >>> Conclusion Receiver (KMS-820): for MT & CSEM

Background >>> Architecture & HW >>> Examples >>> Conclusion KMS-5100 Transmitter – 100 KVA 2016

> 15 years of excellence in electromagnetic R&D

Background >>> Architecture & HW >>> Examples >>> Conclusion A 195 channel system

Background >>> Architecture & HW >>> Examples >>> Conclusion Outline

Objective & history Architecture & hardware > Examples: - 11 channel MT - Monitoring - FSEM > Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion MT data example: KMS 820 data

© 2009 - 2016 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Architecture & HW >>> Examples >>> Conclusion MT: Digital 3-C fluxgate magnetometer:

Analogue input (6 ch)

• MT: Hx, Hy, Hz, Ex, Ey

Fluxgate magnetometer

- Digital 32 bit,
- 3 components
- DC to 180 Hz
- Use for Tipper less digging
- Lower cost

> 15 years of excellence in electromagnetic R&D

Background >>> Architecture & HW >>> Examples >>> Conclusion MT: Fluxgate magnetometer & induction coils

Standard transfer function estimation (using H)

Improved transfer function estimation (using E)

© 2009 - 2016 KMS Technologies

Background >>> Architecture & HW >>> Examples >>> Conclusion Outline

Objective & history Architecture & hardware > Examples: - 11 channel MT - Monitoring - FSEM > Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Reservoirs seal: EM & microseismic - effective stress

After Carlson, 2013

- Overburden & fluid stress in balance
- When fluid pressure too high →quick sand
- Seal BRITTLE → porosity reduction → resistivity increase
- Seal FRACTURE → porosity increase → resistivity increase
- Microseismic signature from fracturing
- EM responds to fluid movements
- EM signature from brittle & fracturing

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Example layout

Microseismic sensors

Site	MODULE	Ex-Ey	Ez	Hz	3C fluxgate H	3C geophone
	KMS-820	X	1	X	x	x
	KMS-831	X	1	Y		X
*	SBHT	x	x		×	x

E – electric field sensors H – magnetic field sensors

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: 195 channel monitoring system

RESERVOIR MONITORING

ARRAY Electromagnetics

- 195 channels, wifi, wireless or LAN
- 3C magnetic field (DC to 40 kHz)
- 3C microseismic
- 2C electric fields
- Shallow borehole (microseismic/EM)

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Raw data example: microseismic/EM monitoring

Background >>> Architecture & HW >>> Examples >>> Conclusion Outline

Objective & history Architecture & hardware > Examples: - 11 channel MT - Monitoring - FSEM > Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion FSEM: Focused source solution to volume imaging

Rykhlinskaya, E., & Davydycheva, S., 2014, U.S. Patent 8,762,062 B2. Davydycheva, S., 2016, U.S. Patent Application US 2016/0084980 A1. Background >>> Architecture & HW >>> Examples >>> Conclusion FSEM: Focused source solution to volume imaging

Two reservoirs 2 km below mudline

© 2009 - 2016 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Backgrund >>> Architecture & HW >>> Examples >>> Conclusion FSEM: Objectives FSEM example salt dome

- Proof that FSEM focuses the image below the receivers on a 3D structure
- Test data was acquired by KMS in 2015 at 2 occasions: 3D structure = salt dome Hockley
- Data was modeled in 3D Anisotropic
 - Normal CSEM
 - FSEM processed data

Verification of results with Lease Owner

Background >>> Architecture & HW >>> Examples >>> Conclusion FSEM: Focused Source EM: Survey setting

Tx North: -340 m (29.9659° 95.8274°)

Tx South: 0 (29.9628° 95.8273°)

900 m (29.9547° 95.8272°) 1100 m (29.9529° 95.8271°) 1300 m (29.9510° 95.8271°)

Background >>> Architecture & HW >>> Examples >>> Conclusion FSEM: Measurements vs 3D model: transients in Rx1, Rx2, Rx3

- Offset-corrected data (lines) vs model (dots)
 - DC levels: checked to 1 nV
 - Time-decay curves
- Ex (inline) & Ey (cross-line):
 - In all receivers: similar timedecay
 - Ey is comparable to Ex because at the edge of the salt dome currents tend to turn around its corner(s)
- Circular dipole data:
 - Show focused vertical current
 - All receivers behave different:
 - Rx3 is NOT above salt: vertical current is positive
 - Rx2 & Rx1 are above salt: vertical current is negligible – (model) or even slightly negative (data)
 - Difficult to match "zero current down" above shallow resistor
 - Difficult to match the data wiggles at early times (shallow effects)

STANDARD CSEM

Background >>> Architecture & HW >>> Examples >>> Conclusion Summary & 5 year vision

- New instruments allow us to re-visit
 - Full anisotropy 3D models
 - 3D tensor acquisition
 - Tie to borehole measurements
- ➢ Value recognized (but NOT understood) →
 ➢ Integration with other methods is key
 ➢ Big potential in reservoir monitoring

Background >>> Methods >>> Monitoring examples Acknowledgements

> Thanks to supporters of various parts: Aramco, DeepLook consortium (BP, Chevron, ConocoPhillips, Shell), ENI, Ormat, PTTEP, Shell, WellDynamics

All technology protected by US & Foreign patents (ref. KMS Technologies website)